Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Nat Commun ; 14(1): 2639, 2023 05 08.
Article En | MEDLINE | ID: mdl-37156763

The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.


TRPM Cation Channels , TRPM Cation Channels/metabolism , Cell Differentiation
2.
J Chem Theory Comput ; 18(12): 7751-7763, 2022 Dec 13.
Article En | MEDLINE | ID: mdl-36459593

Protein-ligand binding free-energy calculations using molecular dynamics (MD) simulations have emerged as a powerful tool for in silico drug design. Here, we present results obtained with the ARROW force field (FF)─a multipolar polarizable and physics-based model with all parameters fitted entirely to high-level ab initio quantum mechanical (QM) calculations. ARROW has already proven its ability to determine solvation free energy of arbitrary neutral compounds with unprecedented accuracy. The ARROW FF parameterization is now extended to include coverage of all amino acids including charged groups, allowing molecular simulations of a series of protein-ligand systems and prediction of their relative binding free energies. We ensure adequate sampling by applying a novel technique that is based on coupling the Hamiltonian Replica exchange (HREX) with a conformation reservoir generated via potential softening and nonequilibrium MD. ARROW provides predictions with near chemical accuracy (mean absolute error of ∼0.5 kcal/mol) for two of the three protein systems studied here (MCL1 and Thrombin). The third protein system (CDK2) reveals the difficulty in accurately describing dimer interaction energies involving polar and charged species. Overall, for all of the three protein systems studied here, ARROW FF predicts relative binding free energies of ligands with a similar accuracy level as leading nonpolarizable force fields.


Molecular Dynamics Simulation , Proteins , Ligands , Protein Binding , Entropy , Molecular Conformation , Proteins/chemistry , Thermodynamics
3.
Nat Commun ; 13(1): 4114, 2022 07 15.
Article En | MEDLINE | ID: mdl-35840593

N-methyl-D-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer's disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration ("membrane-to-channel inhibition" (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism.


Receptors, N-Methyl-D-Aspartate , Dizocilpine Maleate , Ion Channels , Ketamine/pharmacology , Memantine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Eur J Med Chem ; 236: 114354, 2022 Jun 05.
Article En | MEDLINE | ID: mdl-35453065

Currently, of the few accessible symptomatic therapies for Alzheimer's disease (AD), memantine is the only N-methyl-d-aspartate receptor (NMDAR) blocker approved by the FDA. This work further explores a series of memantine analogs featuring a benzohomoadamantane scaffold. Most of the newly synthesized compounds block NMDARs in the micromolar range, but with lower potency than previously reported hit IIc, results that were supported by molecular dynamics simulations. Subsequently, electrophysiological studies with the more potent compounds allowed classification of IIc, a low micromolar, uncompetitive, voltage-dependent, NMDAR blocker, as a memantine-like compound. The excellent in vitro DMPK properties of IIc made it a promising candidate for in vivo studies in Caenorhabditis elegans (C. elegans) and in the 5XFAD mouse model of AD. Administration of IIc or memantine improved locomotion and rescues chemotaxis behavior in C. elegans. Furthermore, both compounds enhanced working memory in 5XFAD mice and modified NMDAR and CREB signaling, which may prevent synaptic dysfunction and modulate neurodegenerative progression.


Alzheimer Disease , Memantine , Alzheimer Disease/drug therapy , Animals , Caenorhabditis elegans , Disease Models, Animal , Memantine/pharmacology , Mice , Receptors, N-Methyl-D-Aspartate
5.
Nature ; 605(7908): 172-178, 2022 05.
Article En | MEDLINE | ID: mdl-35444281

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate1-3. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1-O4)4-6. Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs)6-10. Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.


Receptors, Glutamate , Receptors, Ionotropic Glutamate , Glutamic Acid/metabolism , Molecular Dynamics Simulation , Protein Domains , Receptors, Glutamate/metabolism , Receptors, Ionotropic Glutamate/metabolism
6.
Curr Res Struct Biol ; 2: 79-88, 2020.
Article En | MEDLINE | ID: mdl-34235471

A lipopolysaccharide (LPS) molecule is a key component of the bacterial outer membrane used to protect the bacterium and to interact with the environment. To gain insight into its function, the study of the LPS conformation and dynamics at the molecular and cellular levels is necessary, but these highly diverse and dynamic membrane-LPS systems are difficult to study. In this work, by using NMR spectroscopy and molecular dynamics (MD) simulations, we determined the conformational preferences of an E. coli O176 O-antigen polysaccharide at the atomic level. Moreover, we analyzed the use of non-uniform sampling (NUS) for the acquisition of high dynamic range spectra, like 1H,1H-NOESY NMR experiments. A comparison of the effective transglycosidic distances derived from conventional uniformly sampled and NUS 1H,1H-NOESY data showed high similarity under equal measuring time conditions. Furthermore, the experimentally derived internuclear distances of the O-antigen polysaccharide with ten repeating units (RUs) showed very good agreement to those calculated from the MD simulations of the same O-antigen polysaccharide in solution. Analysis of the LPS bilayer simulations with five and with ten RUs revealed that, although similar with respect to populated states in solution, the O-antigen in LPS bilayers had more extended chains as a result of spatial limitations due to close packing. Additional MD simulations of O-antigen polysaccharides from E. coli O6 (branched repeating unit) and O91 (negatively charged linear repeating unit) in solution and LPS bilayers were performed and compared to those of O176 (linear polymer). For all three O-antigens, the ensemble of structures present for the polysaccharides in solution were consistent with the results from their 1H,1H-NOESY experiments. In addition, the similarities between the O-antigen on its own and as a constituent of the full LPS in bilayer environment makes it possible to realistically describe the LPS conformation and dynamics from the MD simulations.

7.
J Phys Chem B ; 123(27): 5700-5708, 2019 07 11.
Article En | MEDLINE | ID: mdl-31260306

Protein-lipopolysaccharide (LPS) interactions play an important role in providing a stable outer membrane to Gram-negative bacteria. However, the LPS molecules are highly viscous, and sampling LPS motions is thus challenging on a microsecond time scale in simulations. To this end, we introduce a new protocol to randomly allow the LPS molecules to self-assemble around the protein and thereby reduce the starting bias in the simulations. Here we present all-atom molecular dynamics simulations of the OmpE36 porin in an outer membrane model which sum up to a simulation time of more than 20 µs and identify the geometrical properties of the first LPS shell and the role of calcium ions in LPS binding to the protein. The simulations reproduce LPS binding to the porin observed in a recently determined crystal structure but not as compact as in the crystal structure. In addition, the influence of the outer membrane environment on the protein dynamics was analyzed. Our findings highlight the role of divalent cations in stabilizing the binding between proteins and LPS molecules in the outer membrane of Gram-negative bacteria.


Gram-Negative Bacteria/chemistry , Lipopolysaccharides/chemistry , Molecular Dynamics Simulation , Porins/chemistry , Binding Sites
8.
Biophys J ; 116(6): 1095-1104, 2019 03 19.
Article En | MEDLINE | ID: mdl-30850116

The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer having phospholipids in the inner leaflet and lipopolysaccharides in the outer leaflet. This unique asymmetry and the complex carbohydrates in lipopolysaccharides make it a daunting task to study the asymmetrical OM structure and dynamics, its interactions with OM proteins, and its roles in translocation of substrates, including antibiotics. In this study, we combine neutron reflectometry and molecular simulation to explore the physical properties of OM mimetics. There is excellent agreement between experiment and simulation, allowing experimental testing of the conclusions from simulations studies and also atomistic interpretation of the behavior of experimental model systems, such as the degree of lipid asymmetry, the lipid component (tail, head, and sugar) profiles along the bilayer normal, and lateral packing (i.e., average surface area per lipid). Therefore, the combination of both approaches provides a powerful new means to explore the biological and biophysical behavior of the bacterial OM.


Bacterial Outer Membrane , Biophysical Phenomena , Molecular Dynamics Simulation , Escherichia coli K12/cytology , Molecular Conformation , Neutron Diffraction
9.
J Chem Theory Comput ; 15(1): 775-786, 2019 Jan 08.
Article En | MEDLINE | ID: mdl-30525595

Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.


Glycolipids/chemistry , Lipopolysaccharides/chemistry , Bacterial Proteins/chemistry , CD59 Antigens/chemistry , Campylobacter jejuni/chemistry , Cell Membrane/chemistry , Computer Simulation , Escherichia coli/chemistry , Glycosylphosphatidylinositols/chemistry , Humans , Molecular Dynamics Simulation , User-Computer Interface
10.
Cell Chem Biol ; 25(10): 1185-1194.e5, 2018 10 18.
Article En | MEDLINE | ID: mdl-29983273

While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.


Anti-Bacterial Agents/immunology , Epitopes/immunology , Escherichia coli Infections/therapy , Escherichia coli/immunology , Polymyxin B/immunology , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/immunology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Epitopes/chemistry , Epitopes/pharmacology , Escherichia coli Infections/immunology , HEK293 Cells , Humans , Immunotherapy , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Polymyxin B/analogs & derivatives , Polymyxin B/pharmacology , Pseudomonas Infections/immunology
11.
J Comput Chem ; 38(27): 2354-2363, 2017 10 15.
Article En | MEDLINE | ID: mdl-28776689

A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.


Bacteria/chemistry , Cell Membrane/chemistry , Lipopolysaccharides/chemistry , Models, Chemical , Software Design , Bacterial Outer Membrane Proteins/chemistry , Lipid Bilayers/chemistry , Micelles , Molecular Dynamics Simulation , Phospholipids/chemistry
12.
Mol Microbiol ; 105(6): 934-953, 2017 Sep.
Article En | MEDLINE | ID: mdl-28708335

PorB is a well-characterized outer membrane protein that is common among Neisseria species and is required for survival. A vaccine candidate, PorB induces antibody responses that are directed against six variable surface-exposed loops that differ in sequence depending on serotype. Although Neisseria meningitidis is naturally competent and porB genetic mosaicism provides evidence for strong positive selection, the sequences of PorB serotypes commonly associated with invasive disease are often conserved, calling into question the interaction of specific PorB loop sequences in immune engagement. In this report, we provide evidence that antibody binding to a PorB epitope can be altered by sequence mutations in non-epitope loops. Through the construction of hybrid PorB types and PorB molecular dynamics simulations, we demonstrate that loops both adjacent and non-adjacent to the epitope loop can enhance or diminish antibody binding, a phenotype that correlates with serum bactericidal activity. We further examine the interaction of PorB with outer membrane-associated proteins, including PorA and RmpM. Deletion of these proteins alters the composition of PorB-containing native complexes and reduces antibody binding and serum killing relative to the parental strain, suggesting that both intramolecular and intermolecular PorB interactions contribute to host adaptive immune evasion.


Neisseria meningitidis, Serogroup B/metabolism , Neisseria meningitidis/metabolism , Porins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/metabolism , Epitopes/metabolism , Genetic Heterogeneity , Neisseria meningitidis/genetics , Neisseria meningitidis, Serogroup B/genetics , Porins/genetics , Protein Binding , Serogroup , Signal Transduction
13.
Biochemistry ; 56(29): 3826-3839, 2017 07 25.
Article En | MEDLINE | ID: mdl-28609625

The outer leaflet of the outer membrane in Gram-negative bacteria contains lipopolysaccharides (LPS) as a major component, and the outer membrane provides a physical barrier and protection against hostile environments. The enterohemorrhagic Escherichia coli of serogroup O91 has an O-antigen polysaccharide (PS) with five sugar residues in the repeating unit (RU), and the herein studied O-antigen PS contains ∼10 RUs. 1H-13C HSQC-NOESY experiments on a 1-13C-labeled PS were employed to deduce 1H-1H cross-relaxation rates and transglycosidic 3JCH related to the ψ torsional angles were obtained by 1H-1H NOESY experiments. Dynamical parameters were calculated from the molecular dynamics (MD) simulations of the PS in solution and compared to those from 13C nuclear magnetic resonance (NMR) relaxation studies. Importantly, the MD simulations can reproduce the dynamical behavior of internal correlation times along the PS chain. Two-dimensional free energy surfaces of glycosidic torsion angles delineate the conformational space available to the O-antigen. Although similar with respect to populated states in solution, the O-antigen in LPS bilayers has more extended chains as a result of spatial limitations due to close packing. Calcium ions are highly abundant in the phosphate-containing core region mediating LPS-LPS association that is crucial for maintaining bilayer integrity, and the negatively charged O-antigen promotes a high concentration of counterbalancing potassium ions. The ensemble of structures present for the PS in solution is captured by the NMR experiments, and the similarities between the O-antigen on its own and as a constituent of the full LPS in a bilayer environment make it possible to realistically describe the LPS conformation and dynamics from the MD simulations.


Escherichia coli/chemistry , Lipopolysaccharides/chemistry , Molecular Dynamics Simulation , Carbohydrate Conformation , Magnetic Resonance Spectroscopy
14.
Bioinformatics ; 33(19): 3051-3057, 2017 Oct 01.
Article En | MEDLINE | ID: mdl-28582506

MOTIVATION: Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. RESULTS: Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. AVAILABILITY AND IMPLEMENTATION: http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. CONTACT: wonpil@lehigh.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Databases, Protein , Glycoproteins/chemistry , Polysaccharides/chemistry , Carbohydrates/chemistry , Sugars/chemistry
15.
Curr Opin Struct Biol ; 43: 131-140, 2017 04.
Article En | MEDLINE | ID: mdl-28157627

The outer membrane (OM) of Gram-negative bacteria is composed of phospholipids in the periplasmic leaflet and lipopolysaccharides (LPS) in the external leaflet, along with ß-barrel OM proteins (OMPs) and lipidated periplasmic lipoproteins. As a defensive barrier to toxic compounds, an LPS molecule has high antigenic diversity and unique combination of OM-anchored lipid A with core oligosaccharides and O-antigen polysaccharides, creating dynamic protein-LPS and LPS-LPS interactions. Here, we review recent efforts on modeling and simulation of native-like bacterial OMs to explore structures, dynamics, and interactions of different OM components and their roles in transportation of ions, substrates, and antibiotics across the OM and accessibility of monoclonal antibodies (mAbs) to surface epitopes. Simulation studies attempting to provide insight into the structural basis for LPS transport and OMP insertion in the bacterial OM are also highlighted.


Bacterial Outer Membrane Proteins/metabolism , Models, Molecular , Bacteria/cytology , Bacteria/metabolism , Bacterial Outer Membrane Proteins/chemistry , Cell Membrane/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Protein Binding
16.
Biophys J ; 112(2): 346-355, 2017 Jan 24.
Article En | MEDLINE | ID: mdl-28122220

The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P. aeruginosa and, for comparison, Escherichia coli LPS environments on the physical properties of the OMs and OprH using all-atom molecular dynamics simulations. The simulations reveal that although the P. aeruginosa OMs are thinner hydrophobic bilayers than the E. coli OMs, which is expected from the difference in the acyl chain length of their lipid A, this effect is almost imperceptible around OprH due to a dynamically adjusted hydrophobic match between OprH and the OM. The structure and dynamics of the extracellular loops of OprH show distinct behaviors in different LPS environments. Including the O-antigen greatly reduces the flexibility of the OprH loops and increases the interactions between these loops and LPS. Furthermore, our study shows that the interactions between OprH and LPS mainly depend on the secondary structure of OprH and the chemical structure of LPS, resulting in distinctive patterns in different LPS environments.


Bacterial Outer Membrane Proteins/metabolism , Lipopolysaccharides/metabolism , Molecular Dynamics Simulation , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Cell Membrane/metabolism , Drug Resistance, Microbial , Escherichia coli/cytology , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/drug effects , Water/chemistry
17.
J Comput Chem ; 38(15): 1114-1124, 2017 06 05.
Article En | MEDLINE | ID: mdl-27862047

CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc.


Cell Membrane/chemistry , Glycoconjugates/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , Software , Animals , Computer Graphics , Databases, Protein , Electron Spin Resonance Spectroscopy , Gram-Negative Bacteria/chemistry , Humans , Ligands , Solvents/chemistry , User-Computer Interface
18.
Biophys J ; 111(9): 1987-1999, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27806280

Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and form a large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained.


Cell Membrane/drug effects , G(M1) Ganglioside/pharmacology , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Carbohydrate Conformation , Cell Membrane/chemistry , Cell Membrane/metabolism , Dose-Response Relationship, Drug , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Temperature
19.
Biophys J ; 111(8): 1750-1760, 2016 Oct 18.
Article En | MEDLINE | ID: mdl-27760361

Lipid A is the lipid anchor of a lipopolysaccharide in the outer leaflet of the outer membrane of Gram-negative bacteria. In general, lipid A consists of two phosphorylated N-acetyl glucosamine and several acyl chains that are directly linked to the two sugars. Depending on the bacterial species and environments, the acyl chain number and length vary, and lipid A can be chemically modified with phosphoethanolamine, aminoarabinose, or glycine residues, which are key to bacterial pathogenesis. In this work, homogeneous lipid bilayers of 21 distinct lipid A types from 12 bacterial species are modeled and simulated to investigate the differences and similarities of their membrane properties. In addition, different neutralizing ion types (Ca2+, K+, and Na+) are considered to examine the ion's influence on the membrane properties. The trajectory analysis shows that (1) the area per lipid is mostly correlated to the acyl chain number, and the area per lipid increases as a function of the acyl chain number; (2) the hydrophobic thickness is mainly determined by the average acyl chain length with slight dependence on the acyl chain number, and the hydrophobic thickness generally increases with the average acyl chain length; (3) a good correlation is observed among the area per lipid, hydrophobic thickness, and acyl chain order; and (4) although the influence of neutralizing ion types on the area per lipid and hydrophobic thickness is minimal, Ca2+ stays longer on the membrane surface than K+ or Na+, consequently leading to lower lateral diffusion and a higher compressibility modulus, which agrees well with available experiments.


Gram-Negative Bacteria/chemistry , Lipid A/chemistry , Lipid A/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Calcium/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Gram-Negative Bacteria/cytology , Models, Molecular , Molecular Conformation
20.
Biophys J ; 110(12): 2698-2709, 2016 Jun 21.
Article En | MEDLINE | ID: mdl-27332128

The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly ß-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein ß-barrel assembly machine (BAM) catalyzes the insertion and folding of the ß-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane ß-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate ß-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane ß-barrel proteins.


Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Elasticity , Escherichia coli , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Multimerization , Water/metabolism
...